Post-traumatic Osteoarthritis

Once the hammer has hit...

Dr. Arno Smit - WROSC
Hazelmere Golf & Country Club
April 11, 2013
Post-traumatic osteo-arthritis

- Common sequela of high energy impact injury
- Progressively debilitating
- May require surgery: fusion / replacement
- Delayed onset possible
- Super-imposed on pre-existing early OA
Early prognosis / prediction

- Early prognosis / prediction of PTOA difficult
- Incomplete understanding of
 - injury pathways
 - repair mechanism
Early prognosis / prediction

- Early X-rays not reliably predictive:
 - early joint space preservation with compromised cartilage viability
- MRI can cause confusion:
 - bone bruise with intact cartilage surface
- Bone scan may become negative
 - resolution of inflammation, remodelling
Early prognosis / prediction

- Patient may initially do quite well
- Reasonable initial restoration of joint function
- Compromised long term function possible
- May still be serious problem in long-term
Early prognosis / prediction

- PTOA - medical perspective:
 - appropriate counseling
 - supportive therapy as required
 - treatment progressive over time
 - no need to be definitive in prognosis
Early prognosis / prediction

- PTOA - personal injury legal perspective:
 - can be major determinant of magnitude of injury
 - timely settlement vs full appreciation
Early prognosis / prediction

aggravation of pre-existing OA
- widely varying opinions common
- risk of future OA readily downplayed
- balanced assessment?
Articular cartilage - basics

- 2-3 mm layer of soft smooth gliding material
- ‘firm jello’
- Superficial layer → smooth
- Deeper layer → soft, compliant
- Nutrition by joint fluid
- Scattered living cells in cartilage substance
- Anchored to bone
Articular cartilage - basics
Cartilage basics

- thin gliding layer
- scattered chondrocytes
Articular cartilage - basics

- Cartilage cells essential for maintenance
- Ongoing surface wear with use
- Ongoing surface repair as required
- Repair capability diminishes with age
Traumatic joint injury

- Force applied overwhelms tissue resilience
 - bone injury \rightarrow bone bruise, fracture
 - ligament injury \rightarrow sprain, rupture
 - cartilage injury \rightarrow contusion, disruption
 - soft tissue injury \rightarrow contusion, disruption
Traumatic joint injury: multiple mechanisms

- Bone fracture:
 non-anatomic fracture healing → altered force transmission through joint → cartilage overload

- Classic orthopaedic approach → restore anatomy after fracture with cast or surgery to optimize outcome
Traumatic joint injury: multiple mechanisms

- Bone bruise:
 indicator of contusive force through joint surface
 possibly altered force transmission associated with future PTOA

- Readily dismissed as ‘non-significant’ finding
Traumatic joint injury: multiple mechanisms

- Ligament injury may compromise joint stability → altered force transmission through joint → cartilage overload

- Classic orthopaedic approach → restore stability after ligament injury to optimize outcome
Traumatic joint injury: multiple mechanisms

- Cartilage injury
 Sharp injury: may heal side-to-side
 Blunt injury
 - grossly disrupted: poor healing potential
 - contusion only: may cause irreversible damage to cartilage, in absence of gross disruption (!)

- Classic orthopaedic approach: cannot be fixed
Traumatic joint injury: multiple mechanisms

- Soft tissue injury (capsule, synovium etc)
 - bleeding, inflammation-related swelling
 - multiple ‘cartilage unfriendly’ mediators released
 - exact role unknown

- Classic orthopaedic approach: early aspiration vs ‘letting it settle’ → dealer’s choice
Osteo-arthritis after intra-articular fracture

- not fixed ‘properly’ \Rightarrow mechanical overload
- cartilage surface damaged
- cartilage substance damaged
- role of mediators
Clinical Evidence

- no readily available ‘actuarial’ data
- ‘bits and pieces’ only
- Multiple variables:
 - Patient characteristics (age, gender, general health etc, etc)
 - Injury severity
 - ‘Adequacy’ of treatment
 - Natural history of pre-existing OA etc
Classical laboratory evidence

- Animal model
 - difficult to create relevant model (species, legged-ness, insult, treatment etc)
 - both instability and contusive injury implicated in OA
Classical laboratory evidence

- Cell / tissue culture
 - more controllable environment
 - both contusive force and mediator toxicity implicated in cartilage injury
 - ‘leap of faith’ remains
A bolt of lightning

- Yuki Togichi, Thomas Brown, U of Iowa
- ‘Distribution and progression of chondrocyte damage in a whole-organ model of human ankle intra-articular fracture’
- Presented March 2011, VOS meeting
- Published March 2011, JBJS
Dr. Brown paraphrased

- Research focus: ankle pilon (hammer) fracture
- High energy fracture of the ankle plafond
- Sudden axial load by the talus, acting as a hammer
- Severe injury, high rate of PTOA
Dr. Brown paraphrased
1/ intra-operative fragment collection

- Collected non-usable bone/cartilage fragments from operating room at time of surgical treatment of pilon fractures
- Noted decreased cartilage viability in culture
Dr. Brown paraphrased
1/ intra-operative fragment collection

- Multiple explanations:
 - blunt impact trauma
 - mediator exposure (hours/day after injury)
 - interruption of nutrition
 - processing / handling
 - other?
Dr. Brown paraphrased

2/ development of mechanical fracture model

- Pilon fractures have ‘typical’ fracture pattern
- Cadaveric ankles were used to re-create this
- Custom drop tower
- Ankle potted upside down
- Controlled hit of talus by drop weight
 → Reproducible fracture pattern
 → Similar to observed clinically
Dr. Brown paraphrased
3/ fracture creation and cartilage culture

- 7 freshly amputated lower legs
- Directly from OR to drop tower
- Fracture created (all successful)
- Cartilage cultured
- Cartilage assayed up to 48 hours
Dr. Brown paraphrased
3/ fracture creation and cartilage culture

- Cartilage close to fracture line (<1 mm)
- Cartilage away from fracture line (>3 mm)

→ Decreased early viability close to fracture line (8% vs 1% dead chondrocytes)

→ More rapid further decline in viability (26% vs 9% dead chondrocytes)

Note: no statistical difference between t=0 and t=48h in viability away from fracture line (i.e. 1% ~ 9%)
Blunt impact can immediately lead to cartilage cell death in macroscopically normal cartilage.

Further cell death occurs over 48 h, in absence of bleeding, inflammation etc.

Possibly, local mediators play a role.
In-vivo assessment of cartilage viability

- Promising area of research

- MRI → multiple sequences and protocols being evaluated
 → most common: dGEMRIC
 lack of validation
In-vivo assessment of cartilage viability

- X-ray assessment of preservation of joint surface
 - Specificity acceptable
 - Not sufficiently sensitive to conclude: ‘the risk of developing arthritis is low’
In-vivo assessment of cartilage viability

- Arthroscopy:
 - Assessment of macroscopic integrity of joint surface
 - Adjunct to assess water content has been on brink of introduction for several years. Lack of validation
What is next?

- The understanding of PTOA is far from complete
- Inferences can be made about the various proposed mechanisms of injury
- It is not necessary to accept without contest a ‘looks good, will do fine’ opinion
- Significant conjecture will remain for the foreseeable future
Thank you